SYLLABUS PART I EDISON STATE COMMUNITY COLLEGE ELT 234S ROBOTIC SYSTEM INTEGRATION 3 CREDIT HOURS

COURSE DESCRIPTION

Develops a framework for the practical application of robotics, programmable logic controllers, and other automation into a successful system integration for manufacturing. The topics covered include typical industrial applications for robots, development and simulation of robotic systems, specification preparation, financial justification, and successful implementation. Hands-on labs culminate in teams constructing, testing, and evaluating a working industrial workcell. Prerequisite: ELT 151S or ELT 233S. Lab fee.

COURSE GOALS

The student will:

Bloom's		Program
Level		Outcomes
1	1. Identify types of robots and other automation components.	2
1	2. Select a manufacturing application to safely automate.	4
3	3. Develop and simulate a workcell design.	3
5	4. Justify the financial use of automation in a workcell.	7
5	5. Construct an automated workcell.	1, 3, 8
5	6. Test and evaluate an automated workcell.	5
5	7. Construct and deliver a presentation of the team's workcell.	6

CORE VALUES

The Core Values are a set of principles that guide in creating educational programs and environments at Edison State. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce these Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Introduction to automation
- 2. Industrial Robots
- 3. Automation system components
- 4. Typical applications of robotic integration
- 5. Solution development
- 6. Specification preparation
- 7. Financial justification
- 8. Successful implementation