SYLLABUS PART I

EDISON STATE COMMUNITY COLLEGE EGR 262S ELECTRIC VEHICLE STORAGE TECHNOLOGY 3 CREDIT HOURS

COURSE DESCRIPTION

Introduction to battery and storage systems of electric vehicles (EV) with an emphasis placed on battery chemistry and historical systems in use. Topics covered include lithium-ion, nickel-metal hydride, lead-acid, ultracapacitors, and solid-state batteries. The course will also review the most popular technologies in company use today. There will be lectures and hands-on labs to illustrate a practical and theoretical understanding of the technologies. Prerequisite: EGR 160S. Lab Fee.

COURSE GOALS

The student will:

Bloom's Level		Program
Level	4 TT 1 . 1 C	Outcomes
1	1. Understand safety requirements of working with batteries and storage	4
	systems.	
2	2. Determine the future needs for EVs based on historical trends and projected	2
	future use.	
1	3. Describe different EV storage technologies and their applications.	1, 2
2	4. Describe battery chemistry types and available energy.	2, 3
2	5. Describe applications of battery types and their evolution.	1, 2, 3
2	6. Explore hands-on examples of battery systems in EV and hybrids.	3, 4
3	7. Demonstrate ways to troubleshoot and rebuild battery systems.	4
2	8. Explore different approaches to battery designs from different	2, 3
	manufacturers.	
2	9. Distinguish between different hybrid and EV battery system styles.	2, 3
3	10. Estimate energy potential in a battery system.	3
1	11. Identify skills needed for future EV battery sector jobs.	1, 2, 3, 4
3	12. Apply engineering mechanics and electrical principles to solve problems.	4

CORE VALUES

The Core Values are a set of principles that guide in creating educational programs and environments at Edison State. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce these Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Introduction to identifying a battery and working safely with storage systems
- 2. Battery storage, including history, political issues, and costs
- 3. Principles of energy storage and chemistry
- 4. Battery systems, including NiMh sources and applications
- 5. Battery systems, including Li Ion sources and applications
- 6. Battery systems, including lead-acid sources and applications

- Efficiency of battery systems and recycling 7.
- 8. Integration of battery wiring including schematics of systems9. Hybrid systems compared to pure EV systems
- 10. Laboratory exercises to rebuild and troubleshoot systems
- 11. Skills needed in the battery manufacturing sector and its growth