SYLLABUS PART I EDISON STATE COMMUNITY COLLEGE MTH 125P SUPPORTED GENERAL STATISTICS 4 CREDIT HOURS

COURSE DESCRIPTION

Supported general statistics course supplemented with basic math skills necessary to complete the course. Topics include data organization and display; measure of dispersion and central tendencies; probability models, random variables and finite probability distributions; normal and binomial distributions; construction of scatter plots of bivariate data and interpretation of linear regression; normal distribution approximation to the binomial distribution; central limit theorem and confidence limits; introduction to experimental design and sampling; and statistical control charts for statistical process control (SPC). Prerequisite: Satisfactory math assessment score, or grade of "C" or better in MTH 093D. Lab fee.

COURSE GOALS

The student will:

Bloom's		Gen Ed
Level		Outcomes
3	1. Use proper order of operations necessary to evaluate statistical	13
	equations.	1, 5
3	2. Round decimal values to a specified place value based on statistical	1, 3
	rounding rules.	
2	3. Add, subtract, multiply, and divide fractions in the context of	1, 3
	probability.	
2	4. Convert between fractions, decimal values, and percentages.	1, 3
2	5. Interpret slope as marginal change in a regression analysis.	1, 3
3	6. Use linear equations to calculate residual error.	1, 3
3	7. Develop critical reading skills required for proper evaluation of	1, 3
	information given in word problems rooted in real world applications.	
3	8. Develop mathematical experience imperative to grasping complex	13
5	statistical concepts.	1, 5
3	9. Select and produce appropriate graphical, tabular, and numerical	1, 3
5	summaries of the distributions of variables in a data set.	
2	10. Summarize graphical, tabular, and numerical distributions of data into	1, 3
2	verbal descriptions.	
2	11. Summarize relationships in bivariate data using graphical, tabular, and	13
	numerical methods.	1, 5
3	12. Develop scatter plots, two-way tables, correlation coefficients, and least	3
	squares regression lines to display bivariate data.	5
4	13. Analyze the relationships or associations between two variables using	13
	caution in interpreting correlation and association.	1, 5
3	14. Interpret z-scores and compute probabilities using the normal	13
	distribution.	1, 5
4	15. Compare the principles of observational and experimental studies	1, 3
	including sampling methods, randomization, replication, and control.	
4	16. Analyze types of data collection and their affect on the types of	3.6
	conclusions that can be drawn.	5,0
2	17. Construct a model for a random phenomenon using outcomes, events,	3.6
5	and the assignment of probabilities.	3, 0

3	18. Use the addition rule for disjoint events and the multiplication rule for independent events to compute probabilities.	1, 3
3	19. Compute conditional probabilities in the context of two-way tables.	1, 3
3	20. Demonstrate the concept of the distribution of the sample mean and sample proportion under repeated sampling (Central Limit Theorem).	1, 3
3	21. Develop sampling distributions to observe, empirically, the Central Limit Theorem.	1, 6
3	22. Estimate a population mean or proportion using a point estimate and confidence intervals, and interpret the confidence level and margin of error.	1, 3
3	23. Interpret the confidence level and margin of error in terms of a confidence interval.	1, 3, 6
3	24. Determine the appropriate sample size for a specific margin of error and confidence level.	3
5	25. Formulate null and alternative hypothesis given a research question involving a single population.	1, 3
5	26. Describe the logic and framework of the inference of hypothesis testing.	1
5	27. Formulate an appropriate conclusion about statistical significance using a p-value.	1
5	28. Interpret statistical and practical significance through the use of a hypothesis test for a mean or proportion.	1, 3, 6

CORE VALUES

The Core Values are a set of principles that guide in creating educational programs and environments at Edison State. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce those Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Order of operations
- 2. Rounding rules
- 3. Fractions
- 4. Linear equations and slope
- 5. Critical reading
- 6. Raw data organization and graphical presentations of result
- 7. Measures of central tendency and dispersion
- 8. Methods of data collection analysis such as experiments, observations, and surveys
- 9. Random samples and techniques of sampling that assure randomness
- 10. Time series and Statistical Process Control (SPC)
- 11. Scatter plots and lines of regression
- 12. Correlative and causative behavior
- 13. Cross tabulation tables and analysis of goodness of fit
- 14. Probability concepts including relative frequency definition, classical definition, and rules
- 15. Random variables and expected values
- 16. Normal, Binomial, and Chi Square distributions
- 17. Sampling theory and the Central Limit Theorem
- 18. Hypothesis testing for estimation of population parameters and goodness of fit situations