SYLLABUS PART I EDISON COMMUNITY COLLEGE MTH 122S COLLEGE ALGEBRA 3 CREDIT HOURS

COURSE DESCRIPTION

College algebra course designed to provide a basis for continued study in mathematics or application fields. Topics include: functions and relations and their graphs; algebraic operations on functions; theory of polynomial equations; analysis of rational functions; exponential and logarithmic relationships; systems of equations and inequalities. Prerequisite: satisfactory math assessment score and high school Algebra I, Geometry and Algebra II or a grade of "C" or better in MTH 099D. Lab fee.

COURSE GOALS

The student will:

Bloom's		Gen Ed
Level		Outcomes
4	1. Model real world situations through mathematical relations and functions.	1, 3
3	2. Represent functions verbally, numerically, graphically, and algebraically.	1, 3
2	3. Describe the domain and range of standard mathematical relations and	1, 3
	Tunctions.	1.0
2	4. Describe the concept of a function as a set of ordered pairs or a	1, 3
4	correspondence between two sets.	1.0
4	5. Explain graphical differences between relations and relations that are	1, 3
	tunctions.	1.2
4	6. Analyze points and slope to find the equation of a line.	1, 3
4	7. Model linear equations with slope as the average rate of change.	1, 3
4	8. Analyze the algebraic structure and characteristics of a graph of a function	1, 3
	including intercepts, domain, range, and intervals of increase or decrease.	
5	9. Express transformations and translations of functions both algebraically and graphically.	1, 3
3	10. Apply the basic function operations of addition, subtraction,	1, 3
	multiplication, division and composition to real and complex numbers.	
4	11. Analyze and explain through algebraic and graphical techniques the zeros	1, 3
	of polynomial and rational functions.	
4	12. Analyze and determine symmetry of an equation algebraically and graphically.	1, 3
5	13. Express the meaning of an inverse through ideas connected to algebra and geometry.	1, 3
3	14. Solve linear and quadratic equations algebraically including applications	1, 3
	such as interest, geometry, mixtures and distance/time.	
3	15. Solve quadratic equations by factoring, completing the square and the	1, 3
	quadratic formula including those with complex roots.	
3	16. Solve polynomial equations, radical equations and absolute value	1, 3
	equations and inequalities.	
3	17. Solve linear inequalities algebraically and graphically including	1, 3
	applications.	
3	18. Solve systems of linear equations algebraically and graphically including	1, 3

	applications.	
4	19. Compare and contrast the properties of general functions with those of exponential functions.	1, 3
5	20. Integrate the concept of an inverse relationship in developing the characteristics of a logarithmic function.	1, 3
3	21. Calculate and simplify exponential and logarithmic expressions.	1, 3
3	22. Solve exponential and logarithmic equations including models of growth and decay.	1, 3
5	23. Support problem solving and solution methods by using effective group interactions.	5
3	24. Demonstrate understanding through written laboratory activity reports.	2

CORE VALUES

The Core Values are a set of principles that guide in creating educational programs and environments at Edison. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce those Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Algebraic and graphical problem solving techniques
- 2. Translations of basic function graphs
- 3. Basic operations on functional expressions
- 4. Analysis of polynomial functions
- 5. Analysis of rational functions
- 6. Exponential and logarithmic functions