SYLLABUS PART I EDISON STATE COMMUNITY COLLEGE ELT 110S CIRCUITS I 3 CREDIT HOURS

COURSE DESCRIPTION:

Presents the principles of resistance, capacitance, and inductance in direct current circuits. The student will develop a thorough understanding of the application of Ohm's Law, Kirchhoff's Laws and the power formula to series, parallel circuits, and series-parallel circuits. The use of metric prefixes, engineering notation, and equation manipulation will be emphasized. The student will be introduced to the use and care of digital multimeters. Prerequisite: One year of high school algebra or MTH 097D or any college-level math course. Lab fee.

COURSE GOALS:

The student will:

Bloom	Goal		Program
1	1.	Define the terms electrical current, voltage, resistance, energy, power, and	1, 2, 4
		give the units for each.	
2	2.	Distinguish between a conductor, an insulator, and a semiconductor.	1, 2, 4
1	3.	Identify capacitors, inductors, and resistor values based on color-coding.	1, 2, 4
2	4.	Associate heat generated with current flowing through a resistor.	1, 2, 4
1	5.	Describe the basic parts and operation of common types of storage	1, 2, 4
		batteries.	
2	6.	Distinguish a series circuit from a parallel circuit, from a series-parallel	1, 2, 4
		circuit.	
1, 3	7.	Define and apply Ohm's Law, and Kirchhoff's voltage and current laws.	1, 2, 4
1	8.	Measure DC voltage and current in resistive networks.	1, 2, 4
3	9.	Troubleshoot DC circuits and distinguish the effect of an open or a short.	1, 2, 4
1	10.	Calculate time constants for RL and RC circuits.	1, 2, 4
1	11.	Calculate the equivalent impedance of series-parallel circuits.	1, 2, 4
1	12.	Measure and calculate voltages and currents in RLC circuits.	1, 2, 4
2	13.	Recognize and explain loading effects.	1, 2, 4
3	14.	Convert between equivalent current and voltage sources.	1, 2, 4
3	15.	Apply Thevenin's, Norton's and superposition theorems to networks.	1, 2, 4
3	16.	Apply the fundamental laws and rules of magnetism and	1, 2, 4
		electromagnetism.	
4	17.	Analyze series circuits, solve for current, voltage, resistance, and power.	1, 2, 4
4	18.	Analyze parallel circuits, solve for current, voltage, resistance, and power.	1, 2, 4
4	19.	Analyze series-parallel circuits, solve for current, voltage, resistance, and	1, 2, 4
		power.	
3, 4	20.	Apply mesh and nodal analysis techniques to analyze series-parallel	1, 2, 4
		circuits using up to 3 simultaneous equations with 3 unknowns.	
2	21.	Interpret properties of capacitors and explain their behavior under DC	1, 2, 4
		conditions (use exponentials and logarithmic functions to explain behavior	
		of capacitors under DC conditions).	
2	22.	Interpret properties of inductors and explain their behavior under DC	1, 2, 4
		conditions (use exponentials and logarithmic functions to explain behavior	
		of inductors under DC conditions).	

CORE VALUES:

The core values are a set of principles that guide in creating educational programs and environments at Edison. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce these Core Values whenever appropriate.

TOPIC OUTLINE:

- 1. Nature of Electricity
- 2. Batteries
- 3. Conductors, Insulators, and Resistors
- 4. Measuring Current, Voltage, and Resistance
- 5. Ohm's Law, Kirchhoff's Laws and Electrical Calculations
- 6. Series Resistive Circuits
- 7. Parallel Resistive Circuits
- 8. Series-Parallel Circuits
- 9. Network Analysis Techniques and Network Theorems
- 10. Magnetism and Electromagnetism
- 11. Inductance
- 12. Capacitance