SYLLABUS PART I EDISON STATE COMMUNITY COLLEGE CHM 110S INTRODUCTION TO CHEMISTRY 4 CREDIT HOURS

COURSE DESCRIPTION

Fundamental concepts of chemistry: atomic structure, bonding, chemical formulas and equations, states of matter, acids, and bases. Class consists of three hours lecture and two hours lab per week. Prerequisite: One year of high school algebra or MTH 093D. Lab fee.

COURSE GOALS

The student will:

Bloom's		Gen Ed
Level		Outcomes
3	1. Apply knowledge of the metric system to perform unit conversion problems.	1, 3
3	2. Use knowledge of atomic structure to answer questions related to the electronic structures of atoms and chemical bonding.	1
3	3. Use the mole concept to solve problems involving chemical formulas and equations.	1, 3
3	4. Balance simple chemical equations by inspection and interpret the meaning of balanced equations.	1
2	5. Compare and contrast the three states of matter in terms of their properties, the movement of the particles, the distance between the particles, and the attractions between the particles.	1
3	6. Describe kinetic and potential energy and solve problems involving energy changes during heating, cooling, and changes of state.	1, 3
3	7. Describe the physical properties of gases and solve problems involving the gas laws.	1, 3
3	8. Describe the factors which influence the formation of solutions and the solubility of solutes and apply the properties of liquid mixtures to answer questions related to specific examples.	1
3	9. Solve problems involving molarity and dilution of molar solutions.	3
3	10. Define the terms electrolyte, acid, base, and neutralization, and apply this information to writing chemical equations to describe their behavior.	1
3	11. Use the concepts of pH and buffers to answer questions related to specific acid-base examples.	1
3	12. Apply class material to explain laboratory observations and solve problems.	1, 3
3A	13. Work efficiently in teams when performing laboratory experiments.	5
2	14. Communicate clearly orally and in written form.	2

CORE VALUES

The Core Values are a set of principles that guide in creating educational programs and environments at Edison. They include communication, ethics, critical thinking, human diversity, inquiry/respect for

learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce these Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Scientific measurement, scientific notation, unit conversions using dimensional analysis, density, and temperature scales.
- 2. Elements, subatomic particles, isotopes, and the electronic structure of simple atoms.
- 3. Compounds, names and formulas of compounds, ion formation, ionic and covalent bonding, Lewis dot structures of covalent compounds.
- 4. The mole concept, conversions between mass and the number of moles of an element or compound.
- 5. Balancing chemical equations, stoichiometric calculations, and chemical and physical changes.
- 6. The states of matter, changes of state, energy, and energy changes in physical and chemical processes.
- 7. Kinetic molecular theory, behavior of gases, Boyle's law, Charles' law, Gay-Lussac's law, combined gas law, and the ideal gas law.
- 8. Solution terminology, solution formation, solubility behavior, molarity of solutions, the dilution of molar solutions, colloids, suspensions, osmosis, diffusion, and dialysis.
- 9. Electrolytes, Arrhenius acid-base theory, neutralization equations, buffers, and pH of solutions.
- 10. Use of balances, burets, and pipets and procedures for determining the properties of chemicals and identifying chemicals.