SYLLABUS PART I EDISON STATE COMMUNITY COLLEGE MTH 125S GENERAL STATISTICS 3 CREDIT HOURS

COURSE DESCRIPTION

Introductory general statistics course. Topics include data organization and display; measure of dispersion and central tendencies; probability models, random variables and finite probability distributions; normal and binomial distributions; construction of scatter plots of bivariate data and interpretation of linear regression; normal distribution approximation to the binomial distribution; central limit theorem and confidence limits; introduction to experimental design and sampling; and statistical control charts for statistical process control (SPC). Prerequisite: Satisfactory math assessment score, or grade of "C" or better in MTH 093D. Lab fee.

COURSE GOALS

The student will:

Bloom's		Gen Ed
Level		Outcomes
4	1. Select and produce appropriate graphical, tabular, and numerical summaries of the distributions of variables in a data set.	1,3
2	2. Summarize graphical, tabular, and numerical distributions of data into verbal descriptions.	1,3
2	3. Summarize relationships in bivariate data using graphical, tabular, and numerical methods.	1,3
3	4. Develop scatter plots, two-way tables, correlation coefficients and least squares regression lines to display bivariate data.	3
4	5. Analyze the relationships or associations between two variables using caution in interpreting correlation and association.	1,3
3	6. Interpret z-scores and compute probabilities using the normal distribution.	1,3
4	 Compare the principles of observational and experimental studies including sampling methods, randomization, replication and control. 	1,3
4	8. Analyze types of data collection and their affect on the types of conclusions that can be drawn.	3,6
3	9. Construct a model for a random phenomenon using outcomes, events, and the assignment of probabilities.	3,6
3	10. Use the addition rule for disjoint events and the multiplication rule for independent events to compute probabilities.	1,3
3	11. Compute conditional probabilities in the context of two-way tables.	1,3
3	12. Demonstrate the concept of the distribution of the sample mean and sample proportion under repeated sampling (Central Limit Theorem).	1,3
3	13. Develop sampling distributions to observe, empirically, the Central Limit Theorem.	1,6
3	14. Estimate a population mean or proportion using a point estimate and confidence intervals, and interpret the confidence level and margin of error.	1,3
3	15. Interpret the confidence level and margin of error in terms of a confidence interval.	1,3,6

3	16. Determine the appropriate sample size for a specific margin of error and confidence level.	3
5	17. Formulate null and alternative hypothesis given a research question involving a single population.	1,3
5	18. Describe the logic and framework of the inference of hypothesis testing.	1
5	19. Formulate an appropriate conclusion about statistical significance using a p-value.	1
5	20. Interpret statistical and practical significance through the use of a hypothesis test for a mean or proportion.	1,3,6

CORE VALUES

The Core Values are a set of principles that guide in creating educational programs and environments at Edison State. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce those Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Raw data organization and graphical presentations of result
- 2. Measures of central tendency and dispersion
- 3. Methods of data collection analysis such as experiments, observations, and surveys
- 4. Random samples and techniques of sampling that assure randomness
- 5. Time series and Statistical Process Control (SPC)
- 6. Scatter plots and lines of regression
- 7. Correlative and causative behavior
- 8. Cross tabulation tables and analysis of goodness of fit
- 9. Probability concepts including relative frequency definition, classical definition, and rules
- 10. Random variables and expected values
- 11. Normal, Binomial and Chi Square distributions
- 12. Sampling theory and the Central Limit Theorem
- 13. Hypothesis testing for estimation of population parameters and goodness of fit situations