SYLLABUS PART I

EDISON COMMUNITY COLLEGE MET 212S APPLIED STRENGTH OF MATERIALS 3 CREDIT HOURS

COURSE DESCRIPTION

Non-calculus based study of Hooke's law; axial, bending and shearing stresses; deflection and rotation; beams, columns, and tension members. Prerequisite: MET 125S, PHY 121S.

COURSE GOALS

The student will:

Bloom's		Program
Level		Outcomes
3	1. Classify design stresses into compressive, tensile, shear, or some	2
	combination of these three.	
3	2. Apply appropriate factors of safety to designs.	2, 6
3	3. Identify the concept of strain and calculate strain on a structural member	2
	under load.	
3	4. Apply Hooke's law to find stress or strain in a design situation.	2
3	5. Use Poisson's ratio to find either axial or lateral strains.	2
1	6. Identify resources available for finding Poisson's ratio, Young's modulus,	2
	Ultimate strengths, and other parameters for various engineering	
	materials.	
2	7. Recognize where stress concentrations may occur in a design.	2
3	8. Calculate changes in length of, or stresses in structural members resulting	2
	from temperature changes.	
5	9. Design riveted or welded joints.	2, 6
3	10. Size power transmission shafts.	2, 6
3	11. Construct shear and moment diagrams for design of structural beams and	2, 6
	size those beams for the given design loadings.	
3	12. Calculate the deflection in a structural member under load.	2
3	13. Apply the three-moment equation to find support reactions of statically	2
	indeterminate beams.	
5	14. Design for combined stresses using techniques such as Mohr's circle.	2, 6
5	15. Design columns of various materials using Euler's, or other industry-	2, 6
	recommended formulas.	

CORE VALUES

The Core Values are a set of principles which guide in creating educational programs and environments at Edison. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce these Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Simple Stress and Strain
- 2. Torsion
- 3. Shear and Moment in Beams

SYLLABUS PART I

EDISON COMMUNITY COLLEGE MET 212S APPLIED STRENGTH OF MATERIALS 3 CREDIT HOURS

- 4. Stresses in Beams and Beam Deflections
- 5. Restrained and Continuous Beams
- 6. Combined Stresses
- 7. Reinforced Beams
- 8. Columns
- 9. Riveted, Bolted, and Welded Connections
- 10. Inelastic Action