SYLLABUS PART I EDISON COMMUNITY COLLEGE MLT 250S HEMATOLOGY and HEMOSTASIS 4 CREDIT HOURS

COURSE DESCRIPTION

Study of the origin, formation and differentiation of blood cells; erythrocyte and leukocyte pathology in relation to disease states such as anemia and leukemia; techniques in counting red blood cells, platelets, reticulocytes; hemoglobin studies and red blood cell indices. Includes the study of the mechanism of hemostasis, vascular integrity and platelet function in relation to disease states; various coagulation procedures and their clinical applications such as prothrombin time, activated partial thromboplastin time, thrombin time, fibrinogen levels, bleeding time and fibrinogen degradation products. Prerequisite: MLT 121S with a "B" or better and acceptance into the MLT program. Lab fee.

COURSE GOALS

The student will:

		-
Bloom's		Program
level		Outcomes
	1. Define and discuss hematopoiesis including the theory of stem cell	
1.2	development: identify phases and sites of origin for cellular development of	4
-,-	active hematopoietic tissue	-
	2 Explain the role of organ systems in hematopoiesis: associate	
5	nhysical/hematological findings of splenomegaly hyperslenism	4
5	honotoslonomogoly, and lymphodonopothy	-
	2 Handife listing in the statistics of anthrough a statistic DDC	
1	3. Identify distinctive characteristics of erythrocytes and categorize RBCs	4
1	by size, shape, color, inclusions, and distribution patterns.	4
	4. Summarize mechanisms by which normal hemoglobin is structured and	
5	synthesized including iron transport, protoporphyrin IX (heme) formation,	4
	and globulin synthesis and genetic control.	
	5. Discuss the principles of tests used to evaluate erythrocyte production,	
4	adequacy, and survival and the correlation of results with clinical	1,4
	findings.	-
	6. Define and calculate red blood cell indices with appropriate laboratory data;	
4	relate to pathophysiological conditions.	4
	7. Define anemia: compare and contrast anemias using RBC morphology.	
1,2	clinical manifestations, laboratory findings and treatments.	2,4
	8. Identify and describe the morphology and specialized functions of the	,
1.2	five types of leukocytes normally found in peripheral blood.	4
7	9. Describe and identify abnormal forms of leukocytes on prepared smears	
1	or kodachromes and discuss their roles in response to disease or as	14
1	causative agents of disease	1,1
	10. Define laukamia: compare and contract laukamias using sticlogy, insidence	
1.5	10. Define feukenna, compare and contrast feukennas using etfology, incidence,	4
1,5	clinical signs, and symptoms, FAB classification, and treatments.	4
	11. Define and describe lymphomas, proliferative disorders and storage	
1.4	syndromes: explain expected laboratory findings in each.	4

r		
	12. Describe the general principles of basic and specialized procedures in	
1,4	hematology, state the normal parameters measured, identify abnormal	1,3,4
	results, and correlate laboratory results with pathophysiological conditions.	
1	13. Identify each component of the complete blood count and the relevant	
	method of measurement for each. Describe the basic theories of automated	4
	cell counting and sizing.	
	14. Interpret results of measured and calculated parameters from automated cell	
2	counters, including histograms.	3,4
	15. Summarize expected laboratory findings that are characteristic of	
5	specific hematological diseases.	4
1,5	16. Define hemostasis; explain the interaction of systems involved in	4
	maintaining hemostasis.	
2	17. Compare and contrast the intrinsic, extrinsic and common pathways of	4
	coagulation.	
	18. List coagulation and platelet factors describing their site of synthesis,	
1	stability, Vitamin K dependence, role in hemostasis and presence in plasma,	3,4
	serum, absorbed plasma, and aged serum.	
2	19. Discuss the hemostatic interactions in each of the four stages of coagulation.	4
	20. Discuss the role of platelets in the hemostatic mechanism and describe	
2	the principles of platelet function tests.	1.4
	21. Describe the pathology and bleeding tendency in congenital and	
1	acquired deficiencies of coagulation factors.	4
	22. Name and explain the principles of the laboratory tests used to assess blood	
1,5	coagulation factors and, given appropriate laboratory data, determine	1,4
,	appropriate diagnostic testing to order for each coagulation anomaly.	,
2	23. Describe the variables in coagulation testing.	4
4	24. Given coagulation mixing study data, select the most probable factor	4
	deficiency.	
	25. Define and discuss DIC and Primary Fibrinolysis and compare lab-	
1,5	oratory test results in each condition.	3,4
,	26. List and describe hazardous exposure risks in chemistry laboratory: display	5
1	safe and accountable behavior.	
3	27. Demonstrate professionalism in the health care field including; ethics, dress	6,8
	codes, and HIPAA.	
3	28. Demonstrate effective interpersonal skills and teamwork in interactions	
	with peers and instructors.	7,8
3	29. Perform a manual WBC differential count, within 90% of instructor's,	,
	on normal and abnormal smears.	1,4
	30. Perform manual cell counts, within 90% of instructor's, using Unopette	1.4
	system and hemacytometer.	- , -
	······································	

CORE VALUES

The Core Values are a set of principles which guide in creating educational programs and environments at Edison. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce these Core Values whenever appropriate.

TOPIC OUTLINE

1. Introduction to Hematology, Cellular Morphology, Hematopoiesis

- 2. Erythrocytes, Morphology and Inclusions
- 3. Anemias
- 4. Hemoglobinopathies
- 5. Leukocytes: Granulocytes, Monocytes, Lymphocytes, and Plasma Cells
- 6. Leukemias and Lymphomas
- 7. Myeloproliferative and Dysplastic Disorders
- 8. Hematology Procedures; Theory, Principle and Application
- 9. Introduction to Hemostasis/Coagulation
- 10. Coagulation pathways and factors
- 11. Platelets, platelet functions, and platelet disorders
- 12. DIC and Fibrinolysis
- 13. Coagulation Procedures; Theory, Principle and Application
- 14. Correlation of Clinical Test Results to Specific Disease States