SYLLABUS PART I EDISON COMMUNITY COLLEGE PHY 121S COLLEGE PHYSICS I 5 CREDIT HOURS

COURSE DESCRIPTION

Introductory algebra and trigonometry-based course in mechanics and thermal physics. Concepts of force, torque, energy, momentum, and equilibrium are introduced and used as a basis for solving problems, predicting the behavior of objects and systems, and explaining the ways nature works. Includes four hours of lecture and two hours of lab each week. Prerequisite: MTH 123S or MTH 128S. Lab fee.

COURSE GOALS

The student will:

Bloom's		Gen Ed
Level		Outcomes
2	1. Distinguish between velocity and acceleration.	1, 2
3	2. Determine the velocity and acceleration for a body from a distance-time	1, 2
4	 Correctly breakdown up to three vectors using graphical and analytical techniques. 	1, 2
2	4. State Newton's three laws and cite examples relevant to each.	1, 2, 6
3	5. Correctly apply Newton's laws.	1,6
3	6. Use conservation of linear and angular momentum as a tool to solve problems.	1, 3
3	7. Apply the conditions of equilibrium to static conditions.	1, 3
3	8. Correctly apply Newton's laws to situations involving friction.	1, 3, 6
3	9. Relate work and energy to practical situations.	1, 3, 6
3	10. Use conservation of energy as a tool for solving problems.	1, 3
3	11. Apply Pascal's Principle and Archimedes' Principle to static fluids.	1, 3
3	12. Use Bernoulli's Principle and the Continuity Equation to solve Fluid Dynamics problems.	1, 3
3	13. Use and relate various temperature scales.	1, 2, 3
3	14. Calculate thermal expansion for various materials.	1, 2, 3
3	15. Compute specific heats and heat transfer rates.	1, 3
3	16. Solve thermal equilibrium problems.	1, 3, 6
3	17. Apply Boyle's Law, Charles' Law, and the Ideal Gas Law to confined gases.	1, 3, 6
2	18. Describe gas dynamics at the micro and macro levels.	1, 2, 3
2	19. Describe the Laws of Thermodynamics.	1, 2
3	20. Use Hooke's Law and stress/strain relationships to solve elasticity problems.	1, 2, 3
3	21. Calculate the displacement, velocity, acceleration, frequency, and period for	1, 2, 3
2	22. Recognize sound waves as a type of simple harmonic motion.	1, 2, 6

CORE VALUES

The core values are a set of principles that guide in creating educational programs and environments at Edison. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce these Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Kinematics in One Dimension
- 2. Kinematics in Two Dimensions
- 3. Forces and Newton's Laws
- 4. Circular Motion
- 5. Work and Energy
- 6. Linear Momentum
- 7. Rotational Motion
- 8. Simple Harmonic Motion and Elasticity
- 9. Fluids
- 10. Temperature and Heat11. Thermodynamics