SYLLABUS PART I EDISON COMMUNITY COLLEGE MTH 221S CALCULUS AND ANALYTICAL GEOMETRY I 5 CREDIT HOURS

COURSE DESCRIPTION

Introduction to differential and integral calculus. Includes differentiation and integration of algebraic and transcendental functions with applications to science and engineering. Prerequisite: Satisfactory math assessment score and four years of college preparatory mathematics (including pre-calculus), or a grade of "C" or better in MTH 122S and MTH 123S, or MTH 128S.

COURSE GOALS

The student will:

ne stadent n			
Bloom's			Gen Ed
Level			Outcomes
3	1.	Determine the existence of, estimate numerically and graphically, and find	1, 3
		algebraically, the limits of functions.	
3	2.	Recognize and determine infinite limits and limits at infinity and interpret	1, 3
		them with respect to asymptotic behavior.	
3	3.	Determine the continuity of functions at a point or on intervals and	1, 3
		distinguish between the types of discontinuities at a point.	
3	4.	Determine the derivative of a function using the limit definition and	1, 3
		derivative theorems.	
2	5.	Interpret the derivative as the slope of a tangent line to a graph, the slope	1, 3
		of a graph at a point, and the rate of change of a dependent variable with	
		respect to an independent variable.	
3	6.	Determine the derivative and higher order derivatives of a function	1, 3
		explicitly and implicitly.	
3	7.	Use the appropriate techniques to solve related rate problems.	1, 3
4	8.	Determine absolute extrema on a closed interval for continuous functions	1, 3
		and use the first and second derivatives to analyze and sketch the graph of	
		a function, including determining intervals on which the graph is	
		increasing, decreasing, constant, concave up or concave down and finding	
		any relative extrema or inflection points.	
3	9.	Use the appropriate techniques to solve optimization problems.	1, 3
4	10	. Use differentials and linear approximations to analyze applied problems.	1, 3
3	11	. Use numerical methods to approximate definite integrals and areas of	1, 3
		planar regions.	
5	12	. Express definite integrals as the limits of Riemann sums.	1, 3
3	13	. Use anti-derivatives, the Fundamental Theorem of Calculus, integration by	1, 3
		substitution, and integration by parts to determine definite and indefinite	
		integrals.	
5	14	. Evaluate definite integrals in applications such as areas of planar regions,	1, 3
		volume of solids of revolution, work, and probability.	

CORE VALUES

The Core Values are a set of principles that guide in creating educational programs and environments at Edison. They include communication, ethics, critical thinking, human diversity, inquiry/respect for learning, and interpersonal skills/teamwork. The goals, objectives, and activities in this course will introduce/reinforce these Core Values whenever appropriate.

TOPIC OUTLINE

- 1. Tangent and Velocity
- 2. The Limit of a Function
- 3. Calculating Limits Using the Limit Laws
- 4. Continuity
- 5. Limits Involving Infinity
- 6. Derivatives and Rates of Change
- 7. The Derivative of a Function
- 8. What Does f' Say about f?
- 9. Derivatives of Polynomials and Exponential Functions
- 10. The Product and Quotient Rules
- 11. Derivatives of Trigonometric Functions
- 12. The Chain Rule
- 13. Implicit Differentiation
- 14. Inverse Trigonometric Functions and Their Derivatives
- 15. Derivatives of Logarithmic Functions
- 16. Rates of Change in the Natural and Social Sciences
- 17. Linear Approximations and Differentials
- 18. Related Rates
- 19. Maximum and Minimum Values
- 20. Derivatives and the Shapes of Curves
- 21. Optimization Problems
- 22. Newton's Method
- 23. Anti-derivatives
- 24. Areas and Distances
- 25. The Definite Integral
- 26. Evaluating Definite Integrals
- 27. The Fundamental Theorem of Calculus
- 28. The Substitution Rule
- 29. Integration by Parts
- 30. Approximate Integration
- 31. Area Between Curves
- 32. Volumes of Rotation
- 33. Average Value of a Function
- 34. Applications to Physics and Engineering
- 35. Probability